

IN-SITU HEAT TREATMENT TO IMPROVE THE METALLURGY OF HOT WORK TOOL STEEL FABRICATED BY LASER ADDITIVE MANUFACTURING

5th Postgraduate Research Symposium on Ferrous Metallurgy 2022

Anna Tholen¹, Rebecca Higginson¹, Lewis Jones¹, John Tyrer¹, Nick Jones², Ravi Aswathanarayanaswamy², Robert Brown²

¹ Loughborough University, Leicestershire, UK

² Renishaw Plc, Gloucestershire, UK

Email:a.e.tholen@lboro.ac.ukLinkedIn:https://uk.linkedin.com/in/anna-tholen-172700b1

Contents

- 1. Introduction to the problem
- 2. Research objectives and experimental methods
- 3. Results: mechanical properties
- 4. Results: microstructural evolution
- 5. Incorporating in-situ heat treatments into an industrial process
- 6. Conclusions

The Problem

RENISHAW apply innovation[™]

The Problem

Laser powder bed fusion (LPBF) additive manufacturing (AM)

Image sourced from https://www.3dnatives.com/en/direct-metal-lasersintering100420174-2/

The Problem

RENISHAW

The Objective

Loughborough

Ŧ

Continuous cooling transformation (CCT) diagram taken from literature Equilibrium phase-temperature diagram created using Thermocalc software

RENISHAW

apply innovation*

CCT diagram sourced from: https://steelselector.sij.si/steels/UTOPMO2.html

The Objective

apply innovation"

Loughborough **RENISHAW**

Continuous cooling transformation Equilibrium phase-temperature diagram created using Thermocalc software (CCT) diagram taken from literature Primary carbide phase: 1200 Cooling rate in LPBF ~2000°C/s Chromium rich $M_{23}C_6$ 1100 Secondary carbide phases: Chromium rich M_7C_3 precipitation of 1000 carbides Molybdenum rich M_6C 900 Liquid 0.8 800 Ferrite Austenite Б Amount of all phases Temperature in °C 700 M23C6 M_7C_3 0.6 600 M_6C 500 0.4 400 Ms B+C M+C 300 0.2 200 100 597HV 591 HV 546HV 526HV 451HV 282HV 596HV 603HV 0 500 800 1000 600 700 900 1100 1200 1300 1400 1500 100 1000 1 10 10.000 100.000 Temperature [°C] Time in seconds 100 10 1000 Time in minutes

CCT diagram sourced from: https://steelselector.sij.si/steels/UTOPMO2.html

Methods

Sample Creation

Build direction

Samples additively manufactured using RenAM 500E

Methods

RENISHAW ▲

Sample Creation

Samples additively manufactured using RenAM 500E

Dilatometry used to apply heat treatments to samples

Control	
Test 1	
Test 2	
Test 3	
Test 4	

Methods

RENISHAW

Loughborough

Sample Creation

Ø10mm

Samples additively manufactured using RenAM 500E

Dilatometry used to apply heat treatments to samples

Control Test 1 Test 2 Test 3 Test 4

Sample Characterisation

- Vickers hardness (HV5)
- Scanning electron microscopy backscatter imaging
- Energy dispersive X-ray spectroscopy (EDS)
- Ion beam imaging for quantification

RENISHAW

apply innovation"

RENISHAW

apply innovation"

Results

RENISHAW ▲ apply innovation[™]

Control: As built, no heat treatment applied Accelerating voltage 10kV

Results

RENISHAW ▲ apply innovation[™]

Test 3: High temperature, short holding time Accelerating voltage 10kV

Results

RENISHAW ▲ apply innovation[™]

Test 4: Low temperature, long holding time Accelerating voltage 10kV

Industrialisation

RENISHAW apply innovation[™]

Challenge: time vs temperature

- Service temperatures of ancillary components in the build chamber
- Effects of residual heating to surrounding material
- Limitations of a Gaussian laser beam distribution
- At what point is the heat treatment applied?

Photograph of a RenAM250 build chamber, sourced from https://resources.renishaw.com/details/AM250+Dental+build +plate(59498)

Conclusions

ISHAW 🛃

- Preventative measures are needed to avoid large scale crack propagation in tool steel alloy H13 components fabricated by LPBF AM*
- Short term, high temperature heat treatments can transform H13's undesirable AM microstructure to resemble conventionally processed H13
- This has the effect of reducing hardness to levels which also resemble conventionally processed H13
- Further research to be conducted to incorporate this into a LPBF AM* system

*Laser powder bed fusion (LPBF) additive manufacturing (AM)

IN-SITU HEAT TREATMENT TO IMPROVE THE METALLURGY OF HOT WORK TOOL STEEL FABRICATED BY LASER ADDITIVE MANUFACTURING

5th Postgraduate Research Symposium on Ferrous Metallurgy 2022

Anna Tholen¹, Rebecca Higginson¹, Lewis Jones¹, John Tyrer¹, Nick Jones², Ravi Aswathanarayanaswamy², Robert Brown²

¹ Loughborough University, Leicestershire, UK

² Renishaw Plc, Gloucestershire, UK

Email:a.e.tholen@lboro.ac.ukLinkedIn:https://uk.linkedin.com/in/anna-tholen-172700b1